
1

From online references of UWM, Lawrence Livermore
National Lab, National Energy Research Scientific
Computing Center, University of Minnesota,
OpenMP.org

§ What is OpenMP?
§ Open specification for Multi-Processing
§ “Standard” API for defining multi-threaded shared-memory

programs
§ www.openmp.org – Talks, examples, forums, etc.

§ High-level API
§ Preprocessor (compiler) directives (~ 80%)
§ Library Calls (~ 19%)
§ Environment Variables (~ 1%)

2

2

§ OpenMP is a portable, threaded, shared-memory programming
specification with “light” syntax
§ Exact behavior depends on OpenMP implementation!
§ Requires compiler support (C or Fortran)

§ OpenMP will:
§ Allow a programmer to separate a program into serial regions and

parallel regions, rather than T concurrently-executing threads.
§ Hide stack management
§ Provide synchronization constructs

§ OpenMP will not:
§ Parallelize (or detect!) dependencies
§ Guarantee speedup
§ Provide freedom from data races

3

§ Introduction
§ Motivating example
§ Parallel Programming is Hard

§ OpenMP Programming Model
§ Easier than PThreads

§ Microbenchmark Performance Comparison
§ vs. PThreads

4

3

1. Start with a parallel algorithm

2. Implement, keeping in mind:
• Data races
• Synchronization
• Threading Syntax

3. Test & Debug

4. Debug

5. Debug

5

void* SayHello(void *foo) {
printf("Hello, world!\n");
return NULL;

}

int main() {
pthread_attr_t attr;
pthread_t threads[16];
int tn;
pthread_attr_init(&attr);
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
for(tn=0; tn<16; tn++) {

pthread_create(&threads[tn], &attr, SayHello, NULL);
}
for(tn=0; tn<16 ; tn++) {

pthread_join(threads[tn], NULL);
}
return 0;

}
6

4

§ Thread libraries are hard to use
§ P-Threads/Solaris threads have many library calls for

initialization, synchronization, thread creation, condition
variables, etc.

§ Programmer must code with multiple threads in mind

§ Synchronization between threads introduces a new dimension
of program correctness

7

§ Wouldn’t it be nice to write serial programs and somehow
parallelize them “automatically”?

§ OpenMP can parallelize many serial programs with relatively few
annotations that specify parallelism and independence

§ OpenMP is a small API that hides cumbersome threading calls with
simpler directives

8

5

1. Start with some algorithm
• Embarrassing parallelism is helpful, but not necessary

2. Implement serially, ignoring:
• Data Races
• Synchronization
• Threading Syntax

3. Test and Debug

4. Automatically (magically?) parallelize
• Expect linear speedup

9

int main() {

// Do this part in parallel

printf("Hello, World!\n");

return 0;
}

10

6

int main() {

omp_set_num_threads(16);

// Do this part in parallel
#pragma omp parallel
{

printf("Hello, World!\n");
}

return 0;
}

11

1. Start with a parallelizable algorithm
• Embarrassing parallelism is good, loop-level parallelism is

necessary

2. Implement serially, mostly ignoring:
• Data Races
• Synchronization
• Threading Syntax

3. Test and Debug

4. Annotate the code with parallelization (and synchronization)
directives
• Hope for linear speedup

5. Test and Debug
12

7

§ Serial regions by default,
annotate to create parallel
regions
§ Generic parallel regions
§ Parallelized loops
§ Sectioned parallel regions

§ Thread-like Fork/Join model
§ Arbitrary number of logical

thread creation/ destruction
events

Fork

Join

13

int main() {

}

// serial region

printf(“Hello…”);

// serial again

printf(“!”);

Fork

Join

// parallel region

#pragma omp parallel

{

printf(“World”);

} Hello…WorldWorldWorl
dWorld!

14

8

§ Fork/Join can be
nested

§ Nesting complication
handled “automagically”
at compile-time

§ Independent of the
number of threads actually
running

Fork

Join

Fork

Join

15

Master Thread

§ Thread with ID=0

§ Only thread that exists in
sequential regions

§ Depending on
implementation, may have
special purpose inside
parallel regions

§ Some special directives affect
only the master thread (like
master)

Fork

Join

0

0 1 2 3 4 5 6 7

0

16

9

§ Data parallelism
§ Threads perform similar

functions, guided by thread
identifier

§ Control parallelism
§ Threads perform differing

functions
§ One thread for I/O, one for

computation, etc…

Fork

Join

17

§ OpenMP easily parallelizes
loops
§ No data dependencies between

iterations!

§ Preprocessor calculates loop
bounds for each thread directly
from serial source

?

?
for(i=0; i < 25;
i++) {

printf(“Foo”);

}

#pragma omp parallel for

18

10

§ schedule clause determines how loop iterations are divided
among the thread team
§ static([chunk]) divides iterations statically between threads

§ Each thread receives [chunk] iterations, rounding as necessary to
account for all iterations

§ Default [chunk] is ceil(# iterations / # threads)

§ dynamic([chunk]) allocates [chunk] iterations per thread,
allocating an additional [chunk] iterations when a thread finishes
§ Forms a logical work queue, consisting of all loop iterations
§ Default [chunk] is 1

§ guided([chunk]) allocates dynamically, but [chunk] is
exponentially reduced with each allocation

19

for(i=0; i<16; i++)

{

doIteration(i);

}

// Static Scheduling

int chunk = 16/T;
int base = tid * chunk;
int bound = (tid+1)*chunk;

for(i=base; i<bound; i++)
{
doIteration(i);

}

Barrier();

#pragma omp parallel for \

schedule(static)

20

11

for(i=0; i<16; i++)

{

doIteration(i);

}

// Dynamic Scheduling

int current_i;

while(workLeftToDo())
{
current_i = getNextIter();
doIteration(i);

}

Barrier();

#pragma omp parallel for \

schedule(dynamic)

21

§ Parallel programs often employ
two types of data
§ Shared data, visible to all threads,

similarly named
§ Private data, visible to a single

thread (often stack-allocated)

• OpenMP:
– shared variables are shared
– private variables are private

• PThreads:
– Global-scoped variables are

shared
– Stack-allocated variables are

private

// shared, globals

int bigdata[1024];

void* foo(void* bar) {

// private, stack

int tid;

/* Calculation goes

here */

}

int bigdata[1024];

void* foo(void* bar) {
int tid;

#pragma omp parallel \
shared (bigdata) \
private (tid)
{
/* Calc. here */

}
}

22

12

§ OpenMP Synchronization
§ OpenMP Critical Sections

§ Named or unnamed
§ No explicit locks

§ Barrier directives

§ Explicit Lock functions
§ When all else fails – may require
flush directive

§ Single-thread regions within
parallel regions
§ master, single directives

#pragma omp critical

{

/* Critical code here */

}

#pragma omp barrier

omp_set_lock(lock l);

/* Code goes here */

omp_unset_lock(lock l);#pragma omp single

{

/* Only executed once */

} 23

§ Threaded, shared-memory execution model
§ Serial regions and parallel regions
§ Parallelized loops with customizable scheduling

§ Concurrency expressed with preprocessor directives
§ Thread creation, destruction mostly hidden
§ Often expressed after writing a serial version through annotation

24

13

§ Is the overhead of OpenMP too high?
§ How do the scheduling and synchronization options affect

performance?
§ How does autogenerated code compare to hand-written code?

§ Can OpenMP scale?
§ 4 threads? 16? More?

§ What should OpenMP be compared against?
§ PThreads?
§ MPI?

25

§ PThreads
§ Shared-memory, portable threading implementation
§ Explicit thread creation, destruction (pthread_create)
§ Explicit stack management
§ Synch: Locks, Condition variables

§ Microbenchmarks implemented in OpenMP, PThreads
§ Explore OpenMP loop scheduling policies
§ Comparison vs. tuned PThreads implementation

26

14

§ Microbenchmarks implemented in OpenMP and PThreads,
compiled with similar optimizations, same compiler (Sun
Studio)

§ Execution times measured on a 16-processor Sun Enterprise
6000 (cabernet.cs.wisc.edu), 2GB RAM, 1MB L2 Cache

§ Parameters varied:
§ Number of processors (threads)
§ Working set size
§ OpenMP loop scheduling policy

27

§ Conceptually similar to SPLASH-2’s ocean

§ Simulates ocean temperature gradients via successive-
approximation
§ Operates on a 2D grid of floating point values

§ “Embarrassingly” Parallel
§ Each thread operates in a rectangular region
§ Inter-thread communication occurs only on region boundaries
§ Very little synchronization (barrier-only)

§ Easy to write in OpenMP!

28

15

for(t=0; t < t_steps; t++) {

for(x=0; x < x_dim; x++) {
for(y=0; y < y_dim; y++) {
ocean[x][y] = /* avg of neighbors */

}
}

}

#pragma omp parallel for \

shared(ocean,x_dim,y_dim) private(x,y)

// Implicit Barrier Synchronization
temp_ocean = ocean;
ocean = other_ocean;
other_ocean = temp_ocean;

29

§ ocean_dynamic – Traverses entire ocean, row-
by-row, assigning row iterations to threads with
dynamic scheduling.

• ocean_static – Traverses entire ocean, row-
by-row, assigning row iterations to threads
with static scheduling.

• ocean_squares – Each thread traverses a
square-shaped section of the ocean. Loop-
level scheduling not used—loop bounds for
each thread are determined explicitly.

• ocean_pthreads – Each thread traverses a
square-shaped section of the ocean. Loop
bounds for each thread are determined
explicitly.

OpenMP

PThrea
ds

30

16

31

32

17

§ Genetic heuristic-search algorithm for approximating a solution to
the traveling salesperson problem

§ Operates on a population of possible TSP paths
§ Forms new paths by combining known, good paths (crossover)
§ Occasionally introduces new random elements (mutation)

§ Variables:
Np – Population size, determines search space and working set size
Ng – Number of generations, controls effort spent refining solutions
rC – Rate of crossover, determines how many new solutions are produced

and evaluated in a generation
rM – Rate of mutation, determines how often new (random) solutions are

introduced

33

while(current_gen < Ng) {

Breed rC*Np new solutions:

Select two parents

Perform crossover()

Mutate() with probability rM

Evaluate() new solution

Identify least-fit rC*Np solutions:

Remove unfit solutions from population

current_gen++

}

return the most fit solution found

Outer loop has data
dependence
between iterations,
as the population is
not a loop invariant.

Can generate new
solutions in
parallel, but
crossover(),
mutate(), and
evaluate() have
varying runtimes.

Threads can
find least-fit
population
members in
parallel, but
only one
thread
should
actually
delete
solutions.

34

18

§ dynamic_tsp – Parallelizes both breeding loop
and survival loop with OpenMP’s dynamic
scheduling

• static_tsp – Parallelizes both breeding
loop and survival loop with OpenMP’s
static scheduling

• tuned_tsp – Attempt to tune scheduilng.
Uses guided (exponential allocation)
scheduling on breeding loop, static
predicated scheduling on survival loop.

• pthreads_tsp – Divides iterations of
breeding loop evenly among threads,
conditionally executes survival loop in parallel

OpenMP

PThreads

35

36

19

§ OpenMP scales to 16-processor systems
§ Was overhead too high?

§ In some cases, yes

§ Did compiler-generated code compare to hand-written code?
§ Yes!

§ How did the loop scheduling options affect performance?
§ dynamic or guided scheduling helps loops with variable interation

runtimes
§ static or predicated scheduling more appropriate for shorter loops

§ Is OpenMP the right tool to parallelize scientific application?

37

§ Parallel form of SPEC FP 2000 using Open MP, larger working
sets
§ Aslot et. Al., Workshop on OpenMP Apps. and Tools (2001)

§ Many of CFP2000 were “straightforward” to parallelize:
§ ammp: 16 Calls to OpenMP API, 13 #pragmas, converted linked lists

to vector lists
§ applu: 50 directives, mostly parallel or do
§ fma3d: 127 lines of OpenMP directives (60k lines total)
§ mgrid: automatic translation to OpenMP
§ swim: 8 loops parallelized

38

20

Benchmark Lines of Code Parallel Cov. # Par. Sections
ammp 13,500 (C) 99.2 % 7
applu 4,000 99.9 % 22
apsi 7,500 99.9 % 24
art 1,300 (C) 99.5 % 3

facerec 2,400 99.9 % 2
fma3d 60,000 99.5 % 30
gafort 1,500 99.9 % 6
galgel 15,300 96.8 % 29
equake 1,500 (C) 98.4 % 11
mgrid 500 99.9 % 12
swim 400 99.5 % 8

wupwise 2,200 99.8 % 6

39

Aslot et. Al. Execution times on a “generic” 350Mhz machine.

40

21

§ OpenMP Requires compiler support
§ Sun Studio compiler
§ Intel VTune
§ Polaris/OpenMP (Purdue)

§ OpenMP does not parallelize dependencies
§ Often does not detect dependencies
§ Nasty race conditions still exist!

§ OpenMP is not guaranteed to divide work optimally among
threads
§ Programmer-tweakable with scheduling clauses
§ Still lots of rope available

41

§ Doesn’t totally hide concept of volatile data
§ From a high-level, use of OMP’s locks can seem like consistency

violations if flush directive is forgotten

§ Workload applicability
§ Easy to parallelize “scientific” applications
§ How might one create an OpenMP web server? Database?

§ Adoption hurdle
§ Search www.sourceforge.net for “OpenMP”:

§ 3 results (out of 72,000)

42

22

§ OpenMP is a compiler-based technique to create concurrent
code from (mostly) serial code

§ OpenMP can enable (easy) parallelization of loop-based code
§ Lightweight syntactic language extensions

§ OpenMP performs comparably to manually-coded threading
§ Scalable
§ Portable

§ Not a silver bullet for all applications

43

§ www.openmp.org
§ OpenMP official site

§ www.llnl.gov/computing/tutorials/openMP/
§ A handy OpenMP tutorial

§ www.nersc.gov/nusers/help/tutorials/openmp/
§ Another OpenMP tutorial and reference

44

23

Backup Slides

Syntax, etc

45

#pragma omp parallel for \
shared(x) private(i)

for(i=0; i<100; i++) {
#pragma omp atomic
x++;

}
printf(“%i”,x);

#pragma omp parallel for \
shared(x) private(i)

for(i=0; i<100; i++) {
omp_set_lock(my_lock);
x++;

omp_unset_lock(my_lock);
}
printf(“%i”,x);

100

96100

#pragma omp flush

46

24

§ General syntax for OpenMP directives

§ Directive specifies type of OpenMP operation
§ Parallelization
§ Synchronization
§ Etc.

§ Clauses (optional) modify semantics of Directive

#pragma omp directive [clause…] CR

47

§ PARALLEL syntax

Ex: Output: (T=4)

#pragma omp parallel
{
printf(“Hello!\n”);

} // implicit barrier

Hello!
Hello!
Hello!
Hello!

#pragma omp parallel [clause…] CR
structured_block

48

25

§ DO/for Syntax (DO-Fortran, for-C)

Ex:

#pragma omp parallel

{

#pragma omp for private(i) shared(x) \

schedule(static,x/N)

for(i=0;i<x;i++) printf(“Hello!\n”);

} // implicit barrier

Note: Must reside inside a parallel section

#pragma omp for [clause…] CR
for_loop

49

More on Clauses

§ private() – A variable in private list is private to each thread

§ shared() – Variables in shared list are visible to all threads
§ Implies no synchronization, or even consistency!

§ schedule() – Determines how iterations will be divided
among threads
§ schedule(static, C) – Each thread will be given C iterations

§ Usually T*C = Number of total iterations
§ schedule(dynamic) – Each thread will be given additional

iterations as-needed
§ Often less efficient than considered static allocation

§ nowait – Removes implicit barrier from end of block

50

26

§ PARALLEL FOR (combines parallel and for)

Ex:

#pragma omp parallel for shared(x)\

private(i) \

schedule(dynamic)

for(i=0;i<x;i++) {

printf(“Hello!\n”);

}

#pragma omp parallel for [clause…] CR
for_loop

51

Files:

(Makefile)

addmatrix.c // omp-parallelized

matrixmain.c // non-omp

printmatrix.c // non-omp

52

27

§ ATOMIC syntax

Ex:

#pragma omp parallel shared(x)

{

#pragma omp atomic

x++;

} // implicit barrier

#pragma omp atomic CR
simple_statement

53

OpenMP Syntax

• CRITICAL syntax

Ex:
#pragma omp parallel shared(x)
{
#pragma omp critical
{
// only one thread in here

}
} // implicit barrier

#pragma omp critical CR
structured_block

54

28

ATOMIC vs. CRITICAL

§ Use ATOMIC for “simple statements”
§ Can have lower overhead than CRITICAL if HW atomics are

leveraged (implementation dep.)

§ Use CRITICAL for larger expressions
§ May involve an unseen implicit lock

55

§ MASTER – only Thread 0 executes a block

§ SINGLE – only one thread executes a block

§ No implied synchronization

#pragma omp master CR
structured_block

#pragma omp single CR
structured_block

56

29

§ BARRIER

§ Locks
§ Locks are provided through omp.h library calls
§ omp_init_lock()
§ omp_destroy_lock()
§ omp_test_lock()
§ omp_set_lock()
§ omp_unset_lock()

#pragma omp barrier CR

57

§ FLUSH

§ Guarantees that threads’ views of memory is consistent

§ Why? Recall OpenMP directives…
§ Code is generated by directives at compile-time

§ Variables are not always declared as volatile
§ Using variables from registers instead of memory can seem like a

consistency violation

§ Synch. Often has an implicit flush
§ ATOMIC, CRITICAL

#pragma omp flush CR

58

30

§ Functions

omp_set_num_threads()

omp_get_num_threads()

omp_get_max_threads()

omp_get_num_procs()

omp_get_thread_num()

omp_set_dynamic()

omp_[init destroy test set unset]_lock()

59

Thread 0 Thread 1

Thread 2 Thread 3

60

31

61

62

32

63

64

33

65

